• Без рубрики
  • 0

Менее 30 дней

Задача с тремя кругами Эйлера

В классе 35 человек. Известно, что музыкой занимается 13 человек, танцами – 15 человек, плаванием – 20 человек, музыкой и танцами – 4 человека, музыкой и плаванием – 6 человек, плаванием и танцами – 7 человек, музыкой, плаванием и танцами – 1 человек. Есть ли в классе ученики, которые не увлекаются никакими из перечисленных занятий? Если да, то сколько их?

Итак, как же нам решить такую задачу? Те, кто с такими задачами сталкивался, знают, что их очень удобно решать с помощью так называемых кругов Эйлера.

Нам известно, что музыкой занимается 13 человек. Давайте изобразим этих людей с помощью круга, имея в виду, что все эти люди как бы находятся внутри этого круга. Чтобы это подчеркнуть, иногда даже ставят точки внутри этих кругов. Каждая точка символизирует человека. Но мы этого делать не будем. Лучше потом подпишем числами. Итак получаем вот такой круг:

Танцами занимается 15 человек. Это ещё один круг Эйлера. Причём! Он находится не где-то совершенно отдельно от первого, а в обязательном порядке пересекается с первым! Почему? Потому что мы знаем, что есть люди, которые занимаются и музыкой, и танцами. И на нашей диаграмме они должны быть расположены на пересечении этих кругов. Вот так:

Отлично! Теперь переходим к тем, кто занимается плаванием. Их ровно 20. То есть это ещё один «круг людей», который пересекается одновременно с первым кругом, потому что есть люди, занимающиеся музыкой и плаванием, и со вторым, так как есть люди, которые и плавают, и танцуют. То есть получается вот такая комбинация, содержащая 3 круга Эйлера:

Но как же решать задачу? Мы с вами ещё не использовали последнее условие. У нас есть такой уникально одарённый человек, который занимается одновременно и музыкой, и плаванием, и танцами. На нашей диаграмме он находится в том месте, где пересекаются все три круга. То есть в центре. И теперь давайте числами отмечать, сколько людей у нас находится в каждой из получившихся областей. Итак, в центральной части диаграммы у нас находится один человек:

Но тогда! Поскольку мы знаем, что музыкой и танцами занимается 4 человека, а в центральной области находится 1 человек, то в соседней правой области, как легко сообразить, находится человека:

Вычисляем теперь аналогично, сколько человек находится во всех областях на диаграмме, которые соседствуют с центральной. Поскольку музыкой и плаванием занимается 6 человек, то в области левее центральной находится ровно человек. Кроме того, если плаванием и танцами занимается 7 человек, то в области ниже центральной находится человек:

Очень хорошо! Но это ещё не всё. У нас остались белые пятна на диаграмме. Давайте их устраним. Как это сделать? Теперь вспоминаем, что музыкой увлекается 13 человек. Значит, в самой верхней части верхнего круга находится человека:

Аналогично, поскольку танцуют у нас 15 человек, то в самой правой части правого круга находится ровно человек. Ну и поскольку пловцов у нас 20, то в самой левой части левого круга находится ровно ребят. Итак, мы узнали, сколько и где у нас находится людей:

Ну а теперь… Чтобы узнать, сколько человек занимается хотя бы одном каким-то видом увлечений из перечисленных (музыкой, плаванием или танцами), нужно просто сложить все эти числа. Их сумма равна . Но всего в классе 35 человек. Это означает, что есть ровно человека, которые не увлекаются ни одним из перечисленных занятий. И это наш ответ.

Вот такая задача. Эта задача, кстати, была на вступительном экзамене в лицей №1580 в 2018 году. Её решали шестиклассники, которые поступали, соответственно, в 7 класс этого лицея. Я являюсь репетитором по математике и физике и готовлю школьников к вступительным экзаменам в различные школы Москвы, в том числе в лицей 1580. Если вам требуется такая подготовка, обращайтесь ко мне. Мой контакты вы найдёте на этой странице.

Использование диаграмм Эйлера-Венна для доказательства логических равенств

Рассмотрим, как диаграммы Эйлера-Венна применяются для доказательства логических равенств.

Предположим, что перед нами конъюнкция множеств \(A\;\wedge\;B\)

В первую очередь обратим внимание на левую часть равенства. Построим диаграмму для множеств А и B

Графически отметим дизъюнкцию, заштриховав оба круга цветом.

Теперь отобразим инверсию, заштриховав область за пределами множеств.

Обратим внимание на правую часть равенства. В первую очередь отобразим инверсию A штриховкой область за пределами круга множества A цветом

Проведем аналогичную операцию с множеством B.

Теперь штриховкой черным цветом всех областей пересечения отобразим конъюнкцию инверсий множеств А и B.

При сравнении области для отображения правой и левой частей, становится очевидно, что они равны. Справедливость логического равенства доказана с помощью диаграммы Эйлера-Венна.

Для чего нужны круги Эйлера

Круги Эйлера имеют прикладное значение, ведь с их помощью можно решать множество практических задач на пересечение или объединение множеств в логике, математике, менеджменте, информатике, статистике и т.д. Полезны они и в жизни, т.к., работая с ними, можно получать ответы на многие важные вопросы, находить массу логических взаимосвязей.

Есть несколько групп кругов Эйлера:

  • равнозначные круги (рисунок 1 на схеме);
  • пересекающиеся круги (рисунок 2 на схеме);
  • подчиненные круги (рисунок 3 на схеме);
  • соподчиненные круги (рисунок 4 на схеме);
  • противоречащие круги (рисунок 5 на схеме);
  • противоположные круги (рисунок 6 на схеме).

Посмотрите схему:

Но в упражнениях на развитие мышления чаще всего встречаются два вида кругов:

Круги, описывающие объединения понятий и демонстрирующие вложенность одного в другое. Посмотрите пример:

Круги, описывающие пересечения разных множеств, имеющих некоторые общие признаки. Посмотрите пример:

Результат использования кругов Эйлера проследить на этом примере очень просто: обдумывая, какую профессию выбрать, вы можете либо долго рассуждать, пытаясь понять, что больше подойдет, а можете нарисовать аналогичную диаграмму, ответить на вопросы и сделать логический вывод.

Применять метод очень просто. Также его можно назвать универсальным – подходящим для людей всех возрастов: от детей дошкольного возраста (в детских садах детям преподают круги, начиная с 4-5-летнего возраста) до студентов (задачи с кругами есть, к примеру, в тестах ЕГЭ по информатике) и ученых (круги широко применяются в академической среде).

Пример решения задачи с помощью кругов Эйлера

58 человек ежедневно добираются на работу общественным транспортом: на автобусе, на трамвае или на метро. Каждый пользуется хотя бы одним из видов транспорта. 42 человека из них используют метро, 32 – трамвай, 44 – автобус. 21 человек из них используют метро и трамвай, 31 – метро и автобус, 22 – трамвай и автобус. Сколько среди них человек, которые используют все три вида транспорта, чтобы добраться на работу?

Тут нужно понимать, что если сказано, что «42 человека используют метро», то это вовсе не означает, что кроме метро они не используют никаких других видов транспорта. Кто-нибудь из них может быть и использует. Может быть ещё какой-то один вид транспорта, трамвай или автобус. А может и сразу оба! Вопрос задачи как раз и состоит в том, чтобы посчитать людей, которые используют все три вида транспорта.

С первого взгляда даже непонятно, с чего начинать решение. Но если немного поразмыслить, становится ясно, что действовать нужно по следующему алгоритму. Будем стараться расписать всех людей (58 человек) через известные из условия данные. Нам известно, что автобус используют 44 человека. Прибавим к этому количество людей, которые используют метро. Их всего 42 человек. С помощью кругов Эйлера эту операцию можно изобразить наглядно в следующем виде:

То есть пока что мы имеем дело с выражением 58 = 44 + 42… Знак «…» означает, что выражение ещё не закончено. Проблема в том, что мы посчитали людей на пересечении этих кругов дважды. Соответствующая область на диаграмме выделена тёмно-зелёным цветом. Поэтому один раз их нужно вычесть. Это люди, которые пользуются автобусом и метро. Их, как известно, 31. То есть наше «неоконченное» выражение принимает вид: 58 = 44 + 42 — 31… И на диаграмме при этом пропадает тёмно-зелёный цвет:

Пока всё хорошо. Прибавляем теперь людей, которые ездят на трамвае. Таких людей 32. Выражение принимает вид: 58 = 44 + 42 — 31 + 32… Диаграмма с кругами Эйлера, в свою очередь, становится следующей:


Проблема в том, что опять мы хватанули лишку. Люди, которых мы вновь посчитали дважды, отмечены на диаграмме тёмно-зелёным цветом. Эта область находится на пересечении множества, которое мы получили на предыдущем этапе, и множества людей, пользующихся трамваем.

Нужно вычесть людей, которых мы посчитали дважды. Но как это сделать? Единственное, что мы можем сделать, — это разом вычесть людей, которые передвигаются на трамвае и автобусе (их 22 человека), а также на трамвае и метро (таких людей 21). После этого наше неоконченное выражение для общего количества людей примет вид: 58 = 44 + 42 — 31 + 32 — 22 — 21…, а диаграмма с кругами Эйлера окажется с дыркой в центре, потому что центральную часть мы вычли дважды:

К счастью в незакрашенной области как раз и находятся те люди, число которых нам нужно посчитать. Действительно, эти бедняги используют ежедневно все три вида транспорта для того, чтобы добраться до работы, ведь они находятся на пересечении всех трёх множеств. Обозначим количество этих бедолаг за . Тогда диаграмма примет следующий вид:

А уравнение станет следующим:

Расчёты дают . Это и есть ответ к задаче. Столько людей используют все три вида транспорта каждый день, чтобы добраться на работу.

Вот такое вот простое решение. Фактически, в одно уравнение. Просто удивительно, не правда ли?! А теперь представьте, как пришлось бы решать эту задачу без использования кругов Эйлера. Это было бы настоящее мучение. Так что в очередной раз убеждаемся, что любые методы визуализации чрезвычайно полезны при решении задач по математике. Используйте их, это поможет вам в решении сложных задач как на олимпиадах, так и на вступительных экзаменах по математике в лицеи и вузы.

Чтобы проверить, хорошо ли вы поняли решение данной задачи, ответьте на следующие вопросы:

  1. Сколько человек используют только один вид транспорта для того, чтобы добраться до работы?
  2. Сколько человек используют для этого ровно два вида транспорта?

Метамодель в виде кругов Эйлера

А теперь как раз давайте распределим паттерны нарушения метамодели по категориям. Как я уже сказал, по-видимому некоторые паттерны могут получаться при помощи нескольких процессов моделирования мира и, соответственно, восстанавливать информацию тоже можно разными способами.

Например, кванторы общности. Их можно отнести к обобщениям, и к опущениям. Просто нарушение при сверхобобщении может быть разных видов. У человека действительно был опыт, который он распространил на весь контекст: «Все женщины, с которыми у меня были отношения, меня бросали» (было 3-4 случая) => «Женщины всегда бросают» — это чистое обобщение, он не выкидывает какие-то куски опыта, просто расширяет личный опыт на «всех женщин» (создаёт общее правило) Но чаще при сверхобобщении человек ещё чего-то выкидывает, и оказывается, что из пяти «отношений», два заканчивал он сам, один раз расходились полюбовно, и только в двух случаях его бросали. Здесь сначала опущение, потом обобщение. Вывод при этом может быть точно таким же: «Женщины всегда бросают». И вопросы на исправление нарушения как раз будут относится к двум типам: «Все женщины всегда всех бросают?» — выход за границы, — «Были ли в твоей жизни женщины, которые тебя не бросали?» — восстановление опущения.

Аналогично с неспецифичными существительными и местоимениями. С одной стороны происходит обобщение — соседи сверху => люди, — с другой стороны теряется конкретная информация.

При утраченном перформативе при опускании автора мнения одновременно происходит обобщение: «Известно, что это не правильно».

Номинализации здесь относятся одновременно и к искажениями – потому что потеряна структура, — и к опущениям, потому что при «номинализировании» теряется информация о времени и направлении действия.

Имеется в виду, что у переходных глаголов есть направление действия: «Петя любит Веру», — после «номинализирования» превращается в «У Пети любовь с Верой»

Исправление нарушений метамодели

Для восстановления опущений обычно задаётся два основных вопроса: — Кто что с кем/чем сделал? – для восстанавления потерянных субъекта и/или объекта действия. — Как конкретно? – для уточнения информации. Для группы пересечения обобщения и опущения, можно проверить не выкинута ли какая полезная информация: — Было ли, когда было не так? Для выхода за границы и проверки обобщения можно либо проверить правильность обобщения: — Что действительно все/всегда/везде? Либо выясняем последствия выхода за границы: — Что будет, если ты это сделаешь/не сделаешь? Для восстановления структуры (исправления искажений) мы выясняем, на основе чего человек сделал этот вывод: — А с чего ты это взял? — Каким образом…? Либо просто предлагаем «восстановленный» вариант, как с номинализациями: любовь – любить, разговор – разговаривать.

Множества в математике

Диаграммы Венна помогают показать связь теории множеств и логических операций. Круги Эйлера, множества чисел и других предметов тесно связаны. Под множеством понимается совокупность каких-то объектов, называемых элементами. В множества можно объединять объекты с общим признаком. Например, множество студентов второго курса университета или множество статей, написанных одним учёным. Можно выделить три вида таких математических объектов:

  • конечное, например, множество стран;
  • бесконечное — множество звёзд во вселенной;
  • пустое — множество острых углов в прямоугольнике.

В курсах информатики и обычно изучаются такие темы как «Введение в математическую логику» и «Поиск информации в Интернет». При решении задач по этим темам помощь оказывают диаграммы Венна. Для их построения можно использовать онлайн-калькулятор. Обозначения операций над множествами, которым должны соответствовать обозначения в калькуляторе:

  • дополнение ¯A в калькуляторе имеет вид A’;
  • пересечение A∩B представлено как A intersection B;
  • объединение А⋃B обозначено A union B;
  • симметрическая разность A∆B — symmetric difference of A and B;
  • Относительное дополнение AB — AB.

Кольцом в теории множеств называют непустую систему R, замкнутую относительно пересечения и симметрической разности, то есть при пересечении или операции симметрической разности любых двух множеств обязательно получается множество, входящее в R. Это означает, что для любых элементов A, B из кольца элементы A∩B и A∆B будут лежать в кольце.

Отношения между понятиями

Логические операции, разрешающие доказывать утверждения и делать выводы, основаны на связях и отношениях разных понятий. При классификации понятия делятся на сравнимые, между которыми существуют логические связи и отношения, и несравнимые, которые не имеют связей. К несравнимым относятся, например, «машина» и «квадрат», «озеро» и «клетка». У них нет общих элементов и их нельзя сравнивать.

Рисунок 1

Сравнимые понятия подразделяются на совместимые и несовместимые. Совместимые понятия отличаются тем, что имеют хотя бы один общий элемент:

  • равнозначные (тождественные);
  • перекрещивающиеся;
  • подчиняющие и подчинённые.

У равнозначных понятий объёмы полностью совпадают. Например, А — писатель Чехов, В — автор пьесы «Вишнёвый сад». Графически тождественность можно представить как два круга, слившиеся в один (Рисунок 1).

Пересекающимися понятиями, или находящимися в отношении перекрещивания, считаются те, объёмы которых совпадают частично. Пример: A — «математик», B — «репетитор»; A — «студент», B — «спортсмен». Часть объёма понятия «математик» входит в объём понятия «репетитор» и наоборот.

Понятия, состоящие в отношении подчинения, содержат одинаковые элементы, а объём подчинённого целиком входит в объём подчиняющего. Например, «млекопитающее» и «коза».

Несовместимыми называют понятия, не имеющие общих элементов:

  • соподчинённые;
  • противоположные;
  • противоречащие.

Соподчинённые понятия имеют общие элементы и вместе входят в родовое понятие, но в их объёмах общие элементы отсутствуют. Например, А — «корова», B — «овца», C — «млекопитающее». Круги A и B необходимо поместить внутри круга, изображающего объём понятия C, но они не смогут пересекаться, так как не бывает млекопитающих, которые были бы и коровой, и овцой одновременно.

Противоположные понятия — это виды одного и того же рода, но одно из них имеет какой-то признак, а другое не обладает им и содержит признак, несовместимый с первым, направленный против него. Таковы A — «большой дом» и B — «маленький дом». Тут в отличие от отношения противоречия возможны предметы, которые не входят ни в A и ни в B. Если общее родовое C — дом, то в его круге будут изображения двух сегментов A и B, расположенных напротив друг друга, а оставшаяся часть должна соответствовать всем остальным домам (средним, меньше средних).

Отношения между множествами

Также следует различать понятия элементов и множества, объем которых отображают круги Эйлера. Понятие множества заимствовано из математической науки и имеет достаточно широкое значение. Примеры в логике и математике отображают его как некую совокупность объектов. Сами же объекты являются элементами данного множества. «Множество есть многое, мыслимое как единое» (Георг Кантор, основатель теории множеств).

Обозначение множеств осуществляется заглавными буквами: А, В, С, D… и т. д., элементов множеств – строчными: а, b, с, d…и др. Примерами множества могут быть студенты, находящиеся в одной аудитории, книги, стоящие на определенной полке (или, например, все книги в какой-либо определенной библиотеке), страницы в ежедневнике, ягоды на лесной поляне и т. д.

В свою очередь, если определенное множество не содержит ни одного элемента, то его называют пустым и обозначают знаком Ø. Например, множество точек пересечения параллельных прямых, множество решений уравнения х2 = -5.

Архив записей

Архив записейВыберите месяц Сентябрь 2020  (1) Август 2020  (2) Июль 2020  (2) Июнь 2020  (2) Декабрь 2019  (3) Ноябрь 2019  (4) Октябрь 2019  (3) Сентябрь 2019  (2) Май 2019  (1) Октябрь 2018  (1) Июнь 2018  (1) Апрель 2018  (1) Январь 2018  (1) Ноябрь 2017  (1) Октябрь 2017  (1) Сентябрь 2017  (2) Август 2017  (4) Июль 2017  (5) Июнь 2017  (4) Май 2017  (5) Апрель 2017  (2) Март 2017  (1) Февраль 2017  (1) Январь 2017  (3) Декабрь 2016  (1) Ноябрь 2016  (2) Октябрь 2016  (3) Сентябрь 2016  (4) Август 2016  (6) Июль 2016  (9) Июнь 2016  (4) Май 2016  (5) Апрель 2016  (6) Март 2016  (5) Февраль 2016  (8) Январь 2016  (8) Декабрь 2015  (9) Ноябрь 2015  (4) Июль 2015  (1) Март 2015  (1) Февраль 2015  (1) Январь 2015  (1) Июль 2014  (1) Июль 2013  (1) Март 2013  (2) Декабрь 2012  (1) Ноябрь 2012  (1) Сентябрь 2012  (3) Август 2012  (4) Июль 2012  (4) Июнь 2012  (4) Май 2012  (4) Апрель 2012  (5) Март 2012  (7) Февраль 2012  (8) Январь 2012  (7) Декабрь 2011  (5) Ноябрь 2011  (1)

Решение задач

Для решения большого количества задач активно используются круги Эйлера. Примеры в логике наглядно демонстрируют связь логических операций с теорией множеств. При этом используются таблицы истинности понятий. Например, круг, обозначенный именем А, представляет собой область истинности. Таким образом, область вне круга будет представлять ложь. Чтобы определить область диаграммы для логической операции, следует заштриховать области, определяющие круг Эйлера, в которых ее значения для элементов А и В будут истинны.

Использование кругов Эйлера нашло широкое практическое применение в разных отраслях. Например, в ситуации с профессиональным выбором. Если субъект озабочен выбором будущей профессии, он может руководствоваться следующими критериями:

W – что я люблю делать?

D – что у меня получается?

P – чем я смогу хорошо зарабатывать?

Изобразим это в виде схемы: круги Эйлера (примеры в логике – отношение пересечения):

Результатом станут те профессии, которые окажутся на пересечении всех трех кругов.

Отдельное место круги Эйлера-Венна занимают в математике (теория множеств) при вычислении комбинаций и свойств. Круги Эйлера множества элементов заключены в изображении прямоугольника, обозначающего универсальное множество (U). Вместо кругов также могут использоваться другие замкнутые фигуры, но суть от этого не меняется. Фигуры пересекаются между собой, согласно условиям задачи (в наиболее общем случае). Также данные фигуры должны быть обозначены соответствующим образом. В качестве элементов рассматриваемых множеств могут выступать точки, расположенные внутри различных сегментов диаграммы. На ее основе можно заштриховать конкретные области, обозначив тем самым вновь образованные множества.

С данными множествами допустимо выполнение основных математических операций: сложение (сумма множеств элементов), вычитание (разность), умножение (произведение). Кроме того, благодаря диаграммам Эйлера-Венна можно проводить операции сравнения множеств по числу входящих в них элементов, не считая их.

Решение задач, примеры

Круги Эйлера и как решать сложные логические задачи, используя свойства диаграммы, можно показать на примерах.

Задача 1. Пусть имеется следующее условие: 54 школьника шестых классов занимаются в авиамодельном, музыкальном и танцевальном кружках. Каждый посещает хотя бы один кружок. Музыкой занимаются 32 ученика, 22 — танцами, 34 — авиамоделированием. Участвуют в музыкальном и танцевальном кружках 11 школьников, в музыкальном и авиамоделировании — 21, в танцевальном и авиамоделировании — 12. Сколько учащихся посещают все три кружка?

Рисунок 2

Проект решения предполагает необходимость расписать всех 54 школьников в соответствии с условиями задачи. Известно, что в авиамодельном кружке 34 ученика. Если прибавить к этому число учеников, которые занимаются музыкой, их 32 человека, то получится A ⋃ M, где ⋃ обозначение объединения множеств, будет состоять из 34 + 32… учеников.

Но при взгляде на круги Эйлера (Рисунок 2) становится понятно, что те, кто занимается и музыкой, и авиамоделированием посчитаны дважды. Это область на диаграмме, которая принадлежит и кругу A, и кругу М, таких учеников 21. Значит, объединение множеств A ⋃ M будет 34 + 32 — 21…

Теперь нужно прибавить 22 школьника, занимающихся танцами. A ⋃ M ⋃ T равно 34 + 32 — 21 + 22… Тут опять некоторые ученики оказываются посчитаны дважды. Можно вычесть из общей суммы тех, кто занимается танцами и музыкой — 11 человек и 12 человек, участвующих в авиамодельном и танцевальном кружках одновременно. Функция принимает следующий вид: A ⋃ M ⋃ T будет 34 + 32 — 21 + 22 — 11 — 12…

Но при этом школьники, которые посещают все три кружка, оказались отняты дважды. Их число обозначено x и его надо прибавить один раз к имеющейся формуле. Чтобы решить задачу, требуется определить x из полученного уравнения (Рисунок 3).

54 = 34 + 32 — 21 + 22 — 11 — 12 + х; откуда следует, что x = 10. Ответ: 10.

Рисунок 3

Задача 2. В школьную библиотеку пришло 30 учеников седьмого класса. Из них 15 человек взяли учебник по алгебре, 12 — по русскому языку, 10 человек не взяли ни одного учебника. Сколько учеников получили учебники по алгебре и русскому языку?

Множества на диаграммах представлены на рисунке 4. В большом круге 30 учеников, внутри двух малых 30 — 10 = 20 человек. По условию задачи 15 учеников получили учебник по алгебре, значит, 20 — 15 = 5 учеников получили только учебник по русскому языку. А в условии говорится, что 12 человек взяли учебник по русскому, то есть 12 — 5 = 7 школьников получили учебники и по алгебре, и по русскому. Ответ: 7.

Рисунок 4

Круги Эйлера часто применяются для решения самых разных задач. Они служат для развития способности к логическому мышлению у дошкольников. Большой раздел задач для школьников может решаться с помощью диаграмм. Многие учёные в своих исследованиях тоже обращаются к этому методу, который повышает наглядность решаемых проблем и помогает в их обдумывании. Использование простых фигур позволяет свести решение любой сложной задачи к символической логике и упростить ход рассуждений. Диаграммы могут применяться и в обычной жизни, например при поиске работы. Пересечение кругов «лучше всего получается», «больше всего нравится делать» и «чем можно заработать», возможно, даст нужный результат.

Предыдущая
ИнформатикаКак сделать оглавление в ворде — алгоритм создания и примеры
Следующая
ИнформатикаФормула Шеннона — выводы, условия применения и примеры решения

Дополнение множества

Дополнением к множеству A является множество \(\overline A\), которое состоит из элементов, не входящих в А. 

\(\overline A\;=\;\left\{x\;\vert\;x\;\not\in\;A\right\}\)

При этом не все элементы, не являющиеся элементами А, могут быть включены в \(\overline A.\) Принято считать, что все множества, которые участвуют в решении задачи, являются подмножествами некоторого общего универсального множества U. Учитывая это, дополнение \overline A определяется следующим образом:

\(\overline A\;=\;U\;\backslash\;A\)

Таким образом выглядит дополнение \(\overline A\) графически:

Заключение

Собственно, эта статья про моделирование и про обучение. А так же про расширение представления. То есть одна и та же модель может быть описана разными способами — и в виде последовательности действий, и в виде реакции на паттерны, и в виде ролевых переходов, и в виде дигитальной структуры, и, как в этой статье, в виде графической структуры. Что удобнее использовать сильно зависит от контекста применения, цели, личных пристрастий, привычных паттернов мышления и т.д. и т.п., — короче, каждый выбирает себе по вкусу. Паттерны метамодели можно отнести к трём группам – как это сделано в «Структуре магии», — но в то же время они могут одновременно относиться к разным категориям. И к ним можно применять разные способы восстановления информации. И это можно показать в виде графической структуры. Для фокусов языка даётся описание, которое помогает лучше понять, что именно нужно получить в результате использования этих стратегий. И разобраться, как вообще эти штуки работают. Ну и, конечно, более удобное для запоминания графическое представление. Как для метамодели, так и для фокусов языка.

Читайте также: